Carbon Footprint in Fossil Power Plants and Nuclear Energy Systems


  • Ida Nurfaida Nur Energy Security, Defense Management, Republic Indonesia Defense University
  • Nugroho Adi Sasongko National Research and Innovation Agency (BRIN)
  • Mohammad Sidik Boedoyo



carbon footprint, fossil energy, greenhouse gasses (ghg), nuclear energy, power plants


The energy sector, including electricity, heat, and transportation, is the main contributor to GHG emissions because it handles 73.2%. Given the increasingly real threat of the climate crisis, a commitment to reduce the amountof emissions released into the environment needs to be made. One of the emission avoidance measures is an energy transition that shifts dependence on fossil energy to other, cleaner energy sources. As a less polluting technology, nuclear energy ensures a pure environment, thereby enhancing human well-being. Nuclear energy provides and develops greater efficiency and adaptability. It provides access to cheap, reliable, carbon-free energy for industrialized and developing countries. Sixty gigatons of carbon emissions avoided over the last 50 years because of nuclear energy. This form of energy distributes a lot of energy without releasing a lot of contaminants. The criterion of technical advancement must be considered when determining the relationship between the use of nuclear energy and carbon footprint because it can lead to the production of cleaner and alternative sources of energy while lowering the danger of air pollution. The findings support the hypothesis that nuclear energy use may have a negative effect on carbon footprint. These findings imply that the widespread use of nuclear energy can help minimize environmental pollution because it almost entirely eliminates carbon emissions when compared to traditional power plants that use non-renewable energy.


Ahmed, N., Mahboob, F., Hamid, Z., Sheikh, A. A., Sibt, M., Senkus, P., Glabiszewski, W., & Wysoki, A. (2022). Nexus between Nuclear Energy Consumption and Carbon Footprint in Asia Pacific Region : Policy toward Environmental Sustainability. 1–17.

Apridayani, L., Yoesgiantoro, D., Sasongko, N. A., & Apridayani, L. (2021). Analisis Daur Hidup Green Gasoline Pada Teknologi Co-Processing Di Pertamina Ru-Iii Plaju Dalam Memperkuat Ketahanan Energi Dan Pertahanan Negara Life Cycle Assessment Green Gasoline on Co-Processing Technology At Pertamina Ru-Iii Plaju To Strengthen Energy Security and National Defense. 1, 1–13.

Artiningrum, T., Havianto, J., Lingkungan, S. T., Teknik, F., Mukti, U. W., Matahari, S., Listrik, P., & Surya, T. (2019). Meningkatkan Peran Energi Bersih Lewat Pemanfaatan Sinar Matahari (Improve The Role of Clean Energy Through The Utilization). Meningkatkan Peran Energi Bersih Lewat Pemanfaatan Sinar Matahari (Improve The Role of Clean Energy Through The Utilization), 2(2), 100–115.

Azam, A., Rafiq, M., Shafique, M., Zhang, H., & Yuan, J. (2021). Analyzing the effect of natural gas, nuclear energy and renewable energy on GDP and carbon emissions: A multi-variate panel data analysis. Energy, 219, 119592.

Behm, K., Nappa, M., Aro, N., Welman, A., Ledgard, S., Suomalainen, M., & Hill, J. (2022). Comparison of carbon footprint and water scarcity footprint of milk protein produced by cellular agriculture and the dairy industry. International Journal of Life Cycle Assessment, 27(8), 1017–1034.

Feng, Y., Yang, B., Hou, Y., Duan, T. H., Yang, L., & Wang, Y. (2021). Comparative environmental benefits of power generation from underground and surface coal gasification with carbon capture and storage. Journal of Cleaner Production, 310(February), 127383.

Harjanto, N. T. (2008). Dampak lingkungan pusat listrik tenaga fosil dan prospek pltn sebagai sumber energi listrik nasional . 39–50.

Kiss, B., & Szalay, Z. (2023). Sensitivity of buildings ’ carbon footprint to electricity decarbonization : a life cycle – based multi ‑ objective optimization approach. The International Journal of Life Cycle Assessment, 28(7), 933–952.

Lander, L., Kallitsis, E., Hales, A., Edge, J. S., Korre, A., & Offer, G. (2021). Cost and carbon footprint reduction of electric vehicle lithium-ion batteries through efficient thermal management. Applied Energy, 289(February), 116737.

Mostert, C., Ostrander, B., Stefan, B., & Tanja, M. K. (2018). Comparing Electrical Energy Storage Technologies Regarding Their Material and Carbon Footprint. Energies.

Onyeaka, H., Miri, T., Obileke, K. C., Hart, A., Anumudu, C., & Al-Sharify, Z. T. (2021). Minimizing carbon footprint via microalgae as a biological capture. Carbon Capture Science and Technology, 1(September).

Poinssot, C., Bourg, S., Ouvrier, N., Combernoux, N., Rostaing, C., Vargas-gonzalez, M., & Bruno, J. (2014). Assessment of the environmental footprint of nuclear energy systems . Comparison between closed and open fuel cycles. Energy.

Seriño, M. N. V. (2020). Rising carbon footprint inequality in the Philippines. Environmental Economics and Policy Studies, 22(2), 173–195.

Studi, P., Energi, K., & Pertahanan, F. M. (2019). Listrik Di Indonesia Dalam Mendukung Ketahanan Energi Life Cycle Assessment Of Battery For Electric Vehicle Development In Indonesia To Support Energy Security. 1, 85–101.

Suer, J., Ahrenhold, F., & Traverso, M. (2022). Carbon Footprint and Energy Transformation Analysis of Steel Produced via a Direct Reduction Plant with an Integrated Electric Melting Unit. Journal of Sustainable Metallurgy, 8(4), 1532–1545.

Tetteh, E. K., Amankwa, M. O., Yeboah, C., & Amankwa, M. O. (2021). Emerging carbon abatement technologies to mitigate energy-carbon footprint- a review. Cleaner Materials, 2(September), 100020.

Wang, Q., & Ge, S. (2020). Carbon footprint and water footprint in China: Similarities and differences. Science of the Total Environment, 739, 140070.




How to Cite

Ida Nurfaida Nur, Nugroho Adi Sasongko, & Mohammad Sidik Boedoyo. (2024). Carbon Footprint in Fossil Power Plants and Nuclear Energy Systems. International Journal Of Humanities Education and Social Sciences, 3(5).



Social Science