Geomorphological Study of Lanslide in Sukamulya Village, Tegalwaru Sub-district, Purwakarta
DOI:
https://doi.org/10.55227/ijhess.v5i3.2008Keywords:
geomorphology, landslide, morphogenetic, morphometric, morphographicAbstract
Purwakarta Regency represents one of the areas in West Java Province with high landslide susceptibility. This research aims to analyze geomorphological aspects that influence landslide occurrence in Purwakarta using morphogenetic, morphometric, and morphographic approaches. The data utilized encompass regional geological maps, topographic data, rainfall records, and recurring landslide events in the area, particularly in Tegalwaru District and surrounding areas. The research methodology includes morphometric analysis (slope gradient, elevation, and relief indices), morphographic analysis (landform characteristics and drainage patterns), and morphogenetic analysis (landscape formation processes). Results indicate that steep hilly morphology with slope gradients of 16-35°, expansive claystone lithology of the Subang Formation, and morphogenetic processes controlled by volcanic and tectonic activities constitute the primary factors of landslide susceptibility. Morphometric analysis demonstrates that areas with high relative relief (>200 m) and slope gradients exceeding 25% exhibit very high landslide susceptibility. Morphographically, landforms characterized by moderately steep to steep hills with subradial to subparallel drainage patterns reflect strong structural and magmatic controls. Morphogenetic processes are dominated by intensive weathering and gravitational erosion triggered by high rainfall. The combination of these three geomorphological aspects results in moderate to high landslide susceptibility zones across most of Tegalwaru District, particularly in areas with claystone lithology and steep hilly morphology
References
BAKOSURTANAL. (1990a). Peta rupabumi 25.000 lembar 1209-241 Maniis. BAKOSURTANAL.
BAKOSURTANAL. (1990c). Peta rupabumi 25.000 lembar 1209-243 Jatiluhur. BAKOSURTANAL.
Burbank, D. W., & Anderson, R. S. (2001). Tectonic geomorphology (2nd ed.). Blackwell Science.
Carrara, A. (1983). A Multivariate Model for Landslide Hazard Evaluation. Journal of the International Association for Mathematical Geology, 15, 403-426. https://doi.org/10.1007/BF01031290
Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35–46. https://doi.org/10.1016/0034-4257(91)90048-B
Cooke, R. U. (1992). Common ground, shared concerns: Geomorphology and environmental management. In A. Trenhaile (Ed.), Geomorphology and environmental change (pp. 1–22). Oxford University Press.
Dietrich, W. E., & Montgomery, D. R. (1998). SHALSTAB: A digital terrain model for mapping shallow landslide potential. National Center for Earth-Surface Dynamics (NCED) Report. University of California, Berkeley.
Dikau, R., Brunsden, D., Schrott, L., & Ibsen, M.-L. (1996). Landslide recognition: Identification, movement and causes. Wiley.
Evans, I. S. (1972). General characteristics of terrain and its relevance to multistage landforms. In R. J. Chorley (Ed.), Spatial analysis in geomorphology (pp. 17–42). Harper & Row.
Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874. https://doi.org/10.1016/j.patrec.2006.04.003
Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24(1), 38–49. https://doi.org/10.1017/S0376892997000088
Grohmann, C. H., Smith, M. J., & Riccomini, C. (2011). Multiresolution analysis of irregular terrain data. Computers & Geosciences, 37(10), 1684–1696. https://doi.org/10.1016/j.cageo.2011.07.001
Green, W. H., & Ampt, G. A. (1911). Studies on soil physics: 1. The flow of air and water through soils. The Journal of Agricultural Science, 4(1), 1–24. https://doi.org/10.1017/S0021859600001441
Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., & Chang, K.-T. (2012). Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112(1–2), 42–66. https://doi.org/10.1016/j.earscirev.2012.02.001
Hajam, R. A., Hamid, A., & Rather, M. A. (2013). Landslide susceptibility assessment and factor effect analysis using statistical methods in parts of the Kashmir Valley. Current Science, 105(11), 1486–1497.
Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1), 29–36. https://doi.org/10.1148/radiology.143.1.7063747
Lim, S. Y., & Jackson, R. G. (1990). Geomorphologic classification of Gulf of Mexico deltaic plain fluvial systems. In A. J. Bouma & W. R. Normark (Eds.), Submarine fans and turbidite systems (pp. 39–50). Springer-Verlag.
Malamud, B. D., Turcotte, D. L., Guzzetti, F., & Reichenbach, P. (2004). Landslide inventories and their statistical properties. Earth Surface Processes and Landforms, 29(6), 687–711. https://doi.org/10.1002/esp.1064
Montgomery, D. R., & Dietrich, W. E. (1989). Source areas, drainage density, and channel initiation. Water Resources Research, 25(8), 1907–1918. https://doi.org/10.1029/WR025i008p01907
Moore, I. D., Lewis, A., & Gallant, J. C. (1993). Terrain attributes: Estimation methods and scale effects. In A. J. Jakeman, M. B. Beck, & M. J. McAleer (Eds.), Modelling change in environmental systems (pp. 189–214). Wiley.
O'Callaghan, J. F., & Mark, D. M. (1984). The extraction of drainage networks from digital elevation data. Computer Vision, Graphics, and Image Processing, 28(3), 323–344. https://doi.org/10.1016/S0734-189X(84)80011-0
Pohl, C., & van Genderen, J. L. (1998). Multisensor image fusion in remote sensing: Concepts, methods and applications. International Journal of Remote Sensing, 19(5), 823–854. https://doi.org/10.1080/014311698215748
Sidle, R. C., & Ochiai, H. (2006). Landslides: Processes, prediction, and land use. American Geophysical Union.
Simpson, G. D. (1967). The interpretation of interaction in contingency tables. Journal of the Royal Statistical Society, B 29, 238–248.
Strahler, A. N. (1952). Dynamic basis of geomorphology. Geological Society of America Bulletin, 63(3), 923–938. https://doi.org/10.1130/0016-7606(1952)63[923:DBOG]2.0.CO;2
Thornbury, W. D. (1969). Principles of geomorphology (2nd ed.). Wiley.
United Nations Educational, Scientific and Cultural Organization. (2017). Technical note on climate-related hazards and disasters: Implications for disaster risk reduction. UNESCO Natural Sciences Sector.
U.S. Geological Survey. (2019). Landsat 8 data users handbook. Version 5.0. USGS.
Van Zuidam, R. (1985). Aerial photo-interpretation in terrain analysis and geomorphologic mapping. Smits. (Russell G. Congalton, 1991)
Varnes, D. J. (1984). Landslide hazard zonation: A review of principles and practice. UNESCO Press.
Wahyudi, S., Hadi, P., & Santoso, B. (2021). Effectiveness of landslide hazard zonation in reducing rural vulnerability: Evidence from West Java. International Journal of Disaster Risk Reduction, 53, 102002. https://doi.org/10.1016/j.ijdrr.2020.102002
Wilson, J. P., & Gallant, J. C. (Eds.). (2000). Terrain analysis: Principles and applications. Wiley.
Zamroni, A. (2020). The assessment of landslides disaster mitigation in Java Island: Policy implementation and research-to-practice gap. Unpublished Policy Brief. Disaster Management Authority, Ministry of Home Affairs.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Fajar Cahyati, Heridadi Heridadi, Adi Subiyanto, Rachmat Setiawibawa, Anwar Kurniadi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.








































